Understanding The Nature Of UFA Poker By Playing Against Everyone In the World – Part 2

Nobody gets it.

Not only have I theorized that there are hands in actual real-life poker games that play best against an exact number of opponents, I have taught something since the seventies that should help us to understand these seemingly mysterious poker principles.

I posted this concept to RGP, but everyone seemed to skip right over it, as if it were trivial and inconsequential. It isn’t. It explains everything – and so, I’m going to share it with you now.

In draw poker, two small pair is a favorite against someone drawing cards, often against two players drawing cards. But beyond that the hand often becomes unprofitable. In poker, you see, a hand can be a favorite against each opponent individually and still lose money against a large field of opponents collectively. To explain this, I have – for more than 20 years – used the everyone-in-the-world-playing-poker analogy. I goes like this.

If you were playing five card draw against five billion opponents (everyone in the world back in 1976) and you were dealt a pat king-high straight flush, you’d be a huge favorite against each individual opponent. But if everyone in the world called, your hand would be almost worthless. How come? It’s because somebody out there is sure to end up with a royal flush – in fact, many opponents will share the pot with royal flushes.

Suppose everyone bet $1. The pot is now $5 billion. I know what you’re thinking. You’re thinking, “OK, I’m probably going to get this king-high straight flush beat, but it’s still profitable.” If I lose, I lose $1. If I win, I win $5 billion. So, I’ll just stick with this hand and hope nobody beats it.”

But, it doesn’t work that way. Come close. Listen to me. Each additional opponent only adds $1 to the pot. But the cumulative likelihood of somebody beating you gets larger by a factor that quickly overwhelms the value of the dollar. I know this is a tough concept, but look at it this way. I need you to think hard now. Suppose we …